

Abstract

Recently, Knoblock has advocated a mechanism

for automatically constructing planning

hierarchies. We show that Knoblock’s method,

and more generally, the principle of ordered

monotonicity, can produce hierarchies that

perform arbitrarily poorly. The reason is that

Knoblock’s technique addresses only one of two

important factors in ordering clauses. We propose

a technique for the other based on evaluating the

number of potential solutions to different

possible subgoals in a plan.

1 Knoblock’s Method

Recently Knoblock [1, 2] has advocated a mechanism for

automatically constructing fixed hierarchies to control

planning search. The technique involves constructing a

directed graph of potential conflicts between operators

relevant to a goal. The graph is then broken into

components and sorted to give the resulting hierarchy.

To illustrate Knoblock’s approach consider a simplified

machine shop example with the following operators for

shaping, drilling, and painting an object:

Operator

Precs:

Effects:

Operator

Precs:

Effects:

Operator

Precs:

Effects:

Shape x()

Object x()

Shaped x() Drilled x()¬ Painted x()¬, ,

Drill x()

Object x()

Drilled x() Painted x()¬,

Paint x()

Object x() Steel x(),
Painted x()

A Critical Look at Knoblock’s Hierarchy Mechanism

David E. Smith

Rockwell International

444 High St.

Palo Alto, CA 94301

de2smith@rpal.rockwell.com

Suppose that the goal is

The graph that Knoblock would construct for this problem

is:

According to Knoblock’s technique, the planner should

work on before or . After

expanding , the planner should work on

 (because it is unaffected by any operators). It

should then work on before , and so

on.

2 The Problem

Suppose that the initial conditions are such that there are

100 pieces of stock in the machine shop, but only one of

them is made of steel. In this case, Knoblock’s approach

would have the planner hunt through and build partial

plans for many pieces of stock before finding one that is

steel, and hence amenable to painting. In contrast, if the

planner were to start work on followed by

, very little search would be required.

As this example illustrates, Knoblock’s technique can

perform arbitrarily poorly in comparison to the optimal

fixed hierarchy for a problem. More generally,

Ordered

Monotonic

 (OM) hierarchies [1, 3] have this unpleasant

characteristic.

Shaped x() Drilled x()∧ Painted x()∧

Steel x()

Shaped x() Painted x()

Object x()

Drilled x()

Shaped x() Drilled x() Painted x()

Shaped x()

Object x()

Drilled x() Painted x()

Painted x()

Steel x()

Mark A. Peot

Rockwell International

444 High St.

Palo Alto, CA 94301

peot@rpal.rockwell.com

The problem is that there are two different reasons why a

conjunctive goal may be more difficult to solve than the

two conjuncts taken independently:

1. Action interference,

2. Variable binding conflicts.

Knoblock’s technique and OM attempt to address the first

of these; they order clauses to minimize interference

between actions. In fact, Knoblock’s technique imposes

more ordering constraints than necessary to accomplish

this task. In the example above, all possible operator

conflicts can be resolved by simple temporal ordering

constraints among the actions in the plan. These ordering

constraints are detected and resolved by a non-linear

planning system. This is discussed further in [6].

3 Evaluating Clause Difficulty

In our machine shop example, the primary difficulty is

related to variable binding conflicts; i.e. finding a variable

binding for that allows a solution to all three goal

clauses. Knoblock’s technique and OM have nothing to

say about this.

One approach to this problem is to estimate the number of

possible solutions to each clause and order the clauses to

minimize the size of the resulting search space. For the

example above, it is relatively easy to see how this might

be accomplished. For the clause , there is only

one possible operator that applies and its precondition

 has 100 different solutions. As a result, there

are 100 possible solutions to . Similarly,

 has 100 possible solutions. For the clause

, only one possible operator applies, which has

two preconditions and . has

100 solutions, but has only one, so the

conjunction has at most one solution. This means that

 has at most one solution.

The clause therefore has the fewest possible

solutions. If the planner starts with that clause only one

solution will be considered for the other two clauses and a

minimal amount of search is done.

The possibility of recursion among the operators, adds

additional complexity to the problem of calculating the

number of solutions for clauses. Techniques for dealing

with this are described in [6].

x

Shaped x()

Object x()

Shaped x()

Drilled x()

Painted x()

Object x() Steel x() Object x()

Steel x()

Painted x()

Painted x()

4 Conclusion

To control search in planning, we need a much better

means of estimating the difficulty of solving the goals and

subgoals in a planning problem. Knoblock’s technique and

OM attempt to address one aspect of this problem;

estimating action interference between subgoals.

However, these techniques impose unnecessary and

sometimes detrimental ordering constraints.

A second, and equally important aspect of problem

difficulty is recognizing possible variable binding conflicts

between goal clauses. Ordering clauses to minimize the

size of the search space is a key to minimizing such

conflicts. Doing this requires the ability to estimate the

number of solutions possible for each different goal

clause. We have given a hint as to how this might be

accomplished and are currently implementing and

evaluating this technique (see [6]).

 Acknowledgments

Thanks to Craig Knoblock, Steve Minton, Qiang Yang and

anonymous reviewers for comments and discussion. This

work is supported by DARPA contract F30602-91-C-

0031.

 References

1. Knoblock, C.,

Automatically Generating Abstractions
for Problem Solving

, Report CMU-CS-91-120, Carn-
egie Mellon University, 1991.

2. Knoblock, C., Learning abstraction hierarchies for
problem solving. In

 Proc. 8th NCAI

, pages 923–928,
Boston, MA, 1990.

3. Knoblock, C., Tenenberg, J., and Yang, C., Character-
izing abstraction hierarchies for planning. In

Proc. 9th
NCAI

, pages 692–697, Anaheim, CA, 1991.

4. Smith, D., Controlling Backward Inference,

Artificial
Intelligence

 39(2):145–208, 1989.

5. Smith, D.,

A Decision Theoretic Approach to the Con-
trol of Planning Search

, Report LOGIC-87-11,
Department of Computer Science, Stanford Univer-
sity, 1988.

6. Smith, D., and Peot, M.,

Ordering Clauses in Nonlin-
ear Planning

, Technical Report, Rockwell Interna-
tional, Palo Alto Laboratory, 1992.

